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We have analyzed the electronic spectrum and wave-function characteristics of a strongly correlated two-
electron quantum ring with model parameters close to those observed in experiments. The analysis is based on
an exact diagonalization of the Hamiltonian in a large B-spline basis. We propose a qubit pair for storing
quantum information, where one component is stored in the total electron spin and one multivalued “quMbit”
is represented by the total angular momentum. In this scheme the controlled-NOT quantum gate is demonstrated
with near 100% fidelity for a realistic far-infrared electromagnetic pulse.
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I. INTRODUCTION

Quantum gates based on entangled states have in recent
times been proposed in several exotic physical systems, e.g.,
in ion traps1,2 and in cold Rydberg atoms.3 For a solid-state
realization, it has been suggested to represent qubits through
the electron spin confined in so-called quantum dots.4 Con-
trolled operations in a network of quantum dots have subse-
quently been demonstrated5 and more recently also achieved
in dot molecules.6 A major challenge in such systems is de-
coherence through interactions with the environment such as
hyperfine interaction with the surrounding bath of nuclear
spins or coupling to bulk phonon modes.7,8 In this respect,
operations based on laser driven transitions between the in-
volved states9–11 may have certain advantages as they can be
performed much more rapidly than those induced by
microwaves.12,13

Quantum dot experiments have now shown that manipu-
lations of single spins as well as state to state electronic
transitions are feasible and the technology is continuously
improving.14,15 Progress regarding so-called quantum rings
has developed in parallel, theoretically16–18 as well as
experimentally.19,20 A qualitative understanding of the elec-
tronic structure is already well established21–23 and studies of
correlated few-electron rings have been performed �see, e.g.,
Refs. 24–28�.

Some progress toward quantitative operational quantum
gates has been made through suggestions for controlled per-
sistent ring current schemes29 and numerical demonstrations
of fast coherent control in a one-electron quantum ring.30,31

In the present paper we have instead analyzed a strongly
correlated two-electron quantum ring. For the design of
quantum gates in the time domain, a characterization includ-
ing both electron-electron interactions and realistic system
parameters is a prerequisite, and the understanding of the
spectrum of excited states is of utmost importance. With such
knowledge, it is possible to design an electromagnetic pulse
to optimize transitions, as recently shown in the case of a
two-electron quantum dot molecule.9 For this purpose, we
perform an exact diagonalization of the two-electron quan-
tum ring Hamiltonian with realistic model parameters. From
the results, we characterize the wave functions in terms of

conserved quantum numbers, probability densities, and prob-
ability currents. Based on this analysis, we propose an alter-
native form for quantum information storage and show that a
controlled two-bit operation can be performed with almost
100% fidelity.

II. THEORY

A. One electron

The Hamiltonian of one electron confined in a two-
dimensional �2D� quantum ring, modeled by a displaced har-
monic confinement rotated around the z axis, can be written
as

ĥs =
p̂2

2m�
+

1

2
m��0

2�r − r0�2, �1�

where m�=0.067me is the effective mass of GaAs, �0 corre-
sponds to the potential strength, r is the radial coordinate,
and r0 is the ring radius. In polar coordinates, the radial
equation then reads

� �2
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�2

�r2 +
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2

r2 � +
1

2
m��0

2�r − r0�2 − E�unml
�r� = 0, �2�

where ml is the angular quantum number and unml
�r� is the

radial function.
Throughout this work r0=2 a.u.��19.6 nm and ��

=10 meV have been used. These potential parameters corre-
spond well to what has been measured in experiments.32

Note that we here use the abbreviation a.u.� for effective
atomic units, i.e., atomic units that have been rescaled with
the material parameters m� and �r.

The one-particle wave functions are then found by the
single-particle treatment described in Sec. II A in Ref. 33.
Here, however, we use a knot sequence that is centered
around r0 and where the knot points are distributed using an
arcsine function.

B. Two electrons

The two-electron Hamiltonian is written as
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Ĥ0 = ĥs
1 + ĥs

2 +
e2

4��r�0r̂12

, �3�

where �r=12.4 �GaAs�. The corresponding eigenvalues are
found by exact diagonalization in a basis set consisting of

eigenstates to ĥs
1+ ĥs

2, as explained in Ref. 33. The basis set is
truncated at n=13 and �ml�=12, yielding matrix sizes in the
order of 5000�5000.

To visualize the many-body states we calculate the prob-
ability density � and probability current j and integrate out
the coordinates of one of the electrons,

��r1� =	 dr2���r1,r2��2, �4�

j�r1� = R�	 dr2���r1,r2��−
i�

m�
�1��r1,r2��� . �5�

Similarly we calculate the relative probability density �̃ and
the relative probability current j̃ by the coordinate transfor-
mation 	1→	rel=	1−	2,

�̃�r1,	rel� 
 ��r1,	1 − 	2� , �6�

j̃�r1,	rel� 
 j�r1,	1 − 	2� . �7�

Since there is no preferred angle 	 this is equivalent to freez-
ing one electron at 	=0 and calculating the probability den-
sity �current� of the other one.

III. STRUCTURE OF THE STRONGLY CORRELATED
QUANTUM RING

Figure 1 shows the energy-level scheme. The full blue
�dark gray� lines represent spin singlets �S=0� and the
dashed red �light gray� lines represent spin triplets �S=1�.
We observe large singlet-triplet splittings, e.g., between the

first and second excited ML=0 states, caused by the electron-
electron interaction representing �30% of the energy.

Figure 2 depicts the probability densities and probability
currents �Eqs. �4� and �5� for a set of different states. The
lowest energy states for each ML symmetry are all ring
formed and the expected properties—increasing probability
currents with increasing �ML� and sign-dependent direction of
the probability current—are clearly shown. Moreover, both
the first and second excited ML=1 states are ring formed
while the third excited state shows a more dotlike behavior
with a relatively large probability density at the center of the
system.

In Fig. 3 the relative probability densities and relative
probability currents �Eqs. �6� and �7� of the six lowest lying
ML=2 states are shown. The lowest lying state has one rela-
tive current-density peak, the first-excited state has two
peaks, etc., up to the third excited state. These vibrational
excitations are expected in a quantum ring.21 The fourth and
fifth excited states, however, do not continue this quantum
ring pattern, indicating that these more energetic states are

FIG. 1. �Color online� Energy levels as functions of the absolute
value of the total angular momentum �ML�. The full blue �dark gray�
lines correspond to singlets and the dashed red �light gray� lines to
triplets. The states used to realize the CNOT gate are labeled using
the notation �SML�.

FIG. 2. �Color online� Probability densities and currents of the
two-electron ring plotted in the coordinates of the first electron �see
Eqs. �4� and �5�. The left column depicts the lowest energy states
�EXC=0� for ML=0, 1, and −2 counting downward. The right col-
umn depicts the first, second, and third excited states �EXC=1, 2, and
3� with ML=1, also counting downward. Here the ring radius is set
to r0=2 a.u.��19.6 nm.
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more dotlike. For the relative probability current, however,
signs of deviation from ring behavior are seen earlier. While
for a large �or quasi-one-dimensional �quasi-1D� ring, the
radial component of the relative probability currents would
approach �be� zero, the currents here show a rich structure.
Already at the first-excited state, and even more clearly in
the higher lying states, we see complete departure from this
circular shape. Even probability current vortices can be seen,
i.e., between the peaks in the third excited state. Hence, we
are here in a region of strongly correlated electrons that still
exhibit ringlike behavior.

IV. CONTROLLED–NOT OPERATION

The conservation of the total spin �S� and angular mo-
mentum �ML� suggests the possibility to apply these two
variables for storage of quantum information, such that one
qubit is represented by S and another multivalued “quMbit”
is stored in ML. Single qubit operations involving the latter

may then be performed by carefully optimized spin conserv-
ing electromagnetic interactions.9 Controlled spin manipula-
tion will in general be more complicated but can be per-
formed by various schemes involving inhomogeneous
magnetic fields.19,20 The control of the time scale of the two
single-qubit operations will be a matter of magnetic field
inhomogeneity vs size of the quantum ring: experimentally,
the degree of inhomogeneity is allowed to increase with the
ring size, thereby decreasing the spin-flip period. The transi-
tion period between electronic states, which for small radii
are much shorter, will on the other hand increase with the
ring radius. At some point, both of these single-qubit opera-
tions can be performed at comparable time scales.

The critical and remaining question is thus whether two-
qubit operations can be performed in such a way that a
change in an initial �S ,ML� can take place for a conditional
value of S. The relatively strong electron-electron interaction
can here play a constructive role as it changes the electronic
energy shift between internal singlet and triplet states �cf.
Fig. 1�. In this way, the ring size can be used as a parameter
to tune the energy spectrum. Figure 4 depicts the quotient
between E�10�−E�11� and E�01�−E�00� �see Fig. 1� as a function
of the ring radius r0. Starting at unity for r0=0, this quotient
decreases to a minimum at r0�3 a.u.� and then increases
again for larger ring radii. To realize a conditional operation
we want this quotient to be as far from unity as possible.
However, to protect the controlled-NOT �CNOT� against deco-
herence we want the absolute value of both energy differ-
ences to be large. These energy differences decrease mono-
tonically with the ring radius �see inset of Fig. 4�, yielding
better protection for smaller radii. Weighing these two things
together, a ring radius of �2 a.u.� seems a close to optimal
choice.

A. Interaction with the electromagnetic field

We now examine transitions induced by a circularly po-
larized electromagnetic pulse

FIG. 3. �Color online� Relative probability densities and cur-
rents �see Eqs. �6� and �7� of the ML=2 system. The left column
depicts singlets and the right triplets, starting with the lowest lying
singlet �triplet� at the top left �right� corner, continuing with the
first-excited singlet �triplet� in the middle left �right� panel, and so
on, compare Fig. 1. The label EXC=0 is used for ground states, EXC

=1 for the first-excited state, etc. Here the ring radius is set to r0

=2 a.u.��19.6 nm.

FIG. 4. �Color online� The quotient between 
Etriplet=E�10�
−E�11� and 
Esinglet=E�01�−E�00� �see Fig. 1� as a function of the ring
radius r0. The inset shows the absolute value of 
Etriplet and

Esinglet as a function of the same. Here the effective Bohr radius
=1 a.u��9.8 nm.
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E�t� = E�t��cos��Lt�x̂ � sin��Lt�ŷ ,

where �L is the central frequency. The electric-dipole inter-
action then couples neighboring ML states �
ML=1�. The
envelope E�t� is taken as E�t�=E0 sin2��t /T�, which defines
a pulse that lasts from t=0 to t=T. Here we set T
=500 a.u.��28 ps and E0�0.01 a.u.� corresponding to an
intensity of �2.4�102 W /cm2. We solve the time depen-
dent Schrödinger equation in the full basis of eigenstates
obtained from the previous diagonalization. The Hamiltonian
then becomes

Ĥ�t� = Ĥ0 + eE�t� · �r1 + r2� . �8�

It is then readily shown that the time dependent Schrödinger
equation can be written as a coefficient equation including
the transition matrix elements from �the two-particle� state
�j� to state �i�,

ċi�t� = − i�
j

cj�t�eE�t� · �i��r1 + r2��j� . �9�

B. Realization of the CNOT

Figure 5�A� depicts the time development of the popula-
tions of the different states when the pulse central frequency,
�L, corresponds to the energy shift between the two lowest
states in the singlet system 
��SML�=��01�−��00��3.8 meV.
The driving laser frequency would then be �L /2�
�0.9 THz. With the initial state being �SML�= �00�, we ob-
serve a nearly complete transition to �01�, with a small
amount of unwanted population. Also shown is the time de-
velopment of the population of an initial �10� which is seen
to be nearly constant. Thus a CNOT is realized, as clarified in
the truth table of Fig. 5�B�. It clearly depicts how the elec-
tromagnetic pulse transfers �97.5% of the spin singlet popu-
lation while leaving 99.9% of the triplet population
unchanged.

V. DECOHERENCE, ADVANTAGES,
AND POSSIBLE IMPROVEMENTS

The natural lifetime of the excited state is dominated by
phonon relaxation and is at least a few orders of magnitude
longer than the time for the induced transition studied here.34

As shown recently, the pulse induced transition time may
then be decreased by a factor 10–100 through quantum op-
timization field control methods optimized to almost any
fidelity.9,31 Transition times will also be drastically reduced
by increased confinement strength which will lead to consid-
erably higher central frequencies, �L. In the present work,
however, we wanted to examine a region of confinement
strengths that is already accessible in experiments.32

The present proposal has certain advantages compared to
single-quantum-dot qubit systems.14 First, the energy differ-
ence between the spin states prohibits unwanted transitions
up to the order of 10 K. In the quantum molecule qubit, the
energy differences are typically 103 times smaller.7 Further-
more, by taking advantage of a long array of accessible ML
levels, one may develop much more powerful algorithms for
certain operations than systems with only two levels.

VI. SUMMARY AND CONCLUSIONS

In conclusion we have shown that quantum controlled op-
erations defining a conditional two-bit transition can be real-
ized in a two-electron quantum ring. This has been achieved
through a detailed analysis of energy levels and properties of
the wave functions. The electron-electron interaction has
been utilized to effectively store quantum information simul-
taneously in the total spin and total angular momentum. We
have shown that with realistic model parameters it is possible
to find a regime where the singlet and triplet splittings differ
such that an electromagnetic pulse can transfer population of
one spin state to a higher energy level while leaving the
population of the other spin state intact. This opens for type
of solid-state quantum information device, which is an alter-
native to previously proposed devices based on spin and
charge, and which may be conveniently implemented in
quantum rings.

FIG. 5. �Color online� Upper panel: the time development of the
populations of the different states when the central frequency, �L, of
the pulse corresponds to the energy shift between the two lowest
states in the singlet system, 
��SML�=��01�−��00��3.8 meV imply-
ing a laser frequency of 0.9 THz. The population of the state
�SML�= �00� is almost completely transferred to �01�, while the
population of the �10� is seen to be nearly constant. The inset shows
the x component of the electromagnetic pulse. Lower panel: the
truth table shows just a small amount of unwanted population. The
pulse length was chosen to be T=500 a.u��28 ps.

WALTERSSON et al. PHYSICAL REVIEW B 79, 115318 �2009�

115318-4



1 J. I. Cirac and P. Zoller, Phys. Rev. Lett. 74, 4091 �1995�.
2 A. Sørensen and K. Mølmer, Phys. Rev. Lett. 82, 1971 �1999�.
3 M. D. Lukin, M. Fleischhauer, R. Cote, L. M. Duan, D. Jaksch,

J. I. Cirac, and P. Zoller, Phys. Rev. Lett. 87, 037901 �2001�.
4 D. Loss and D. P. DiVincenzo, Phys. Rev. A 57, 120 �1998�.
5 I. Amlani, A. O. Orlov, G. Toth, G. H. Bernstein, C. S. Lent, and

G. L. Snider, Science 284, 289 �1999�.
6 J. R. Petta, A. C. Johnson, C. M. Marcus, M. P. Hanson, and A.

C. Gossard, Phys. Rev. Lett. 93, 186802 �2004�.
7 J. M. Taylor, J. R. Petta, A. C. Johnson, A. Yacoby, C. M. Mar-

cus, and M. D. Lukin, Phys. Rev. B 76, 035315 �2007�.
8 T. Meunier, I. T. Vink, L. H. Willems van Beveren, K. J. Tiel-

rooij, R. Hanson, F. H. L. Koppens, H. P. Tranitz, W. Wegsc-
heider, L. P. Kouwenhoven, and L. M. K. Vandersypen, Phys.
Rev. Lett. 98, 126601 �2007�.

9 L. Sælen, R. Nepstad, I. Degani, and J. P. Hansen, Phys. Rev.
Lett. 100, 046805 �2008�.

10 L. Robledo, J. Elzerman, G. Jundt, M. Atatüre, A. Högele, S.
Fält, and A. Imamoglu, Science 320, 772 �2008�.

11 X. Li, Y. Wu, D. Steel, D. Gammon, T. H. Stievater, D. S.
Katzer, D. Park, C. Piermarocchi, and L. J. Sham, Science 301,
809 �2003�.

12 T. H. Oosterkamp, T. Fujisawa, W. G. van der Wiel, K. Ishibashi,
R. V. Hijman, S. Tarucha, and L. P. Kouwenhoven, Nature �Lon-
don� 395, 873 �1998�.

13 W. G. van der Wiel, M. Stopa, T. Kodera, T. Hatano, and S.
Tarucha, New J. Phys. 8, 28 �2006�.

14 F. H. L. Koppens, C. Buizert, K. J. Tielrooij, I. T. Vink, K. C.
Nowack, T. Meunier, L. P. Kouwenhoven, and L. M. K. Vander-
sypen, Nature �London� 442, 766 �2006�.

15 R. J. Warburton, D. H. C. Schäflein, F. Bickel, A. Lorke, K.
Karrai, J. M. Garcia, W. Schoenfeld, and P. M. Petroff, Nature
�London� 405, 926 �2000�.

16 J. Simonin, C. R. Proetto, Z. Barticevic, and G. Fuster, Phys.
Rev. B 70, 205305 �2004�.

17 B. Alen, J. Martinez-Pastor, D. Granados, and J. M. Garcia,
Phys. Rev. B 72, 155331 �2005�.

18 J. I. Climente, J. Planelles, M. Barranco, F. Malet, and M. Pi,
Phys. Rev. B 73, 235327 �2006�.

19 A. Fuhrer, S. Lüscher, T. Ihn, T. Heinzel, K. Ensslin, W. Weg-
scheider, and M. Bichler, Nature �London� 413, 822 �2001�.

20 A. Fuhrer, T. Ihn, K. Ensslin, W. Wegscheider, and M. Bichler,
Phys. Rev. Lett. 91, 206802 �2003�.

21 S. Viefers, P. Koskinen, P. S. Deo, and M. Manninen, Physica E
�Amsterdam� 21, 1 �2004�.

22 J. Planelles, W. Jaskólski, and J. I. Aliaga, Phys. Rev. B 65,
033306 �2001�.

23 V. Gudmundsson, C.-S. Tang, and A. Manolescu, Phys. Rev. B
67, 161301�R� �2003�.

24 T. Chakraborty and P. Pietiläinen, Phys. Rev. B 50, 8460 �1994�.
25 Y. Saiga, D. S. Hirashima, and J. Usukura, Phys. Rev. B 75,

045343 �2007�.
26 H. Hu, J.-L. Zhu, and J.-J. Xiong, Phys. Rev. B 62, 16777

�2000�.
27 V. M. Fomin, V. N. Gladilin, J. T. Devreese, N. A. J. M. Klee-

mans, and P. M. Koenraad, Phys. Rev. B 77, 205326 �2008�.
28 A. Puente and L. Serra, Phys. Rev. B 63, 125334 �2001�.
29 G. Tatara and N. Garcia, Phys. Rev. Lett. 91, 076806 �2003�.
30 E. Räsänen, A. Castro, J. Werschnik, A. Rubio, and E. K. U.

Gross, Phys. Rev. Lett. 98, 157404 �2007�.
31 L. G. G. V. Dias da Silva, J. M. Villas-Bôas, and S. E. Ulloa,

Phys. Rev. B 76, 155306 �2007�.
32 A. Lorke, R. J. Luyken, A. O. Govorov, J. P. Kotthaus, J. M.

Garcia, and P. M. Petroff, Phys. Rev. Lett. 84, 2223 �2000�.
33 E. Waltersson and E. Lindroth, Phys. Rev. B 76, 045314 �2007�.
34 U. Bockelmann and G. Bastard, Phys. Rev. B 42, 8947 �1990�.

CONTROLLED OPERATIONS IN A STRONGLY… PHYSICAL REVIEW B 79, 115318 �2009�

115318-5

http://dx.doi.org/10.1103/PhysRevLett.74.4091
http://dx.doi.org/10.1103/PhysRevLett.82.1971
http://dx.doi.org/10.1103/PhysRevLett.87.037901
http://dx.doi.org/10.1103/PhysRevA.57.120
http://dx.doi.org/10.1126/science.284.5412.289
http://dx.doi.org/10.1103/PhysRevLett.93.186802
http://dx.doi.org/10.1103/PhysRevB.76.035315
http://dx.doi.org/10.1103/PhysRevLett.98.126601
http://dx.doi.org/10.1103/PhysRevLett.98.126601
http://dx.doi.org/10.1103/PhysRevLett.100.046805
http://dx.doi.org/10.1103/PhysRevLett.100.046805
http://dx.doi.org/10.1126/science.1155374
http://dx.doi.org/10.1126/science.1083800
http://dx.doi.org/10.1126/science.1083800
http://dx.doi.org/10.1038/27617
http://dx.doi.org/10.1038/27617
http://dx.doi.org/10.1088/1367-2630/8/2/028
http://dx.doi.org/10.1038/nature05065
http://dx.doi.org/10.1038/35016030
http://dx.doi.org/10.1038/35016030
http://dx.doi.org/10.1103/PhysRevB.70.205305
http://dx.doi.org/10.1103/PhysRevB.70.205305
http://dx.doi.org/10.1103/PhysRevB.72.155331
http://dx.doi.org/10.1103/PhysRevB.73.235327
http://dx.doi.org/10.1038/35101552
http://dx.doi.org/10.1103/PhysRevLett.91.206802
http://dx.doi.org/10.1016/j.physe.2003.08.076
http://dx.doi.org/10.1016/j.physe.2003.08.076
http://dx.doi.org/10.1103/PhysRevB.65.033306
http://dx.doi.org/10.1103/PhysRevB.65.033306
http://dx.doi.org/10.1103/PhysRevB.67.161301
http://dx.doi.org/10.1103/PhysRevB.67.161301
http://dx.doi.org/10.1103/PhysRevB.50.8460
http://dx.doi.org/10.1103/PhysRevB.75.045343
http://dx.doi.org/10.1103/PhysRevB.75.045343
http://dx.doi.org/10.1103/PhysRevB.62.16777
http://dx.doi.org/10.1103/PhysRevB.62.16777
http://dx.doi.org/10.1103/PhysRevB.77.205326
http://dx.doi.org/10.1103/PhysRevB.63.125334
http://dx.doi.org/10.1103/PhysRevLett.91.076806
http://dx.doi.org/10.1103/PhysRevLett.98.157404
http://dx.doi.org/10.1103/PhysRevB.76.155306
http://dx.doi.org/10.1103/PhysRevLett.84.2223
http://dx.doi.org/10.1103/PhysRevB.76.045314
http://dx.doi.org/10.1103/PhysRevB.42.8947

